

15-16 February 2021

COMETH Training course

to tumor heterogeneity quantification

EIT Health is supported by the EIT, a body of the European Union

15 January 2021

Bioinformatician point of view Carl Herrmann and Slim Karkar

EIT Health is supported by the EIT, a body of the European Union

Cell-type Deconvolution

"Find the recipe!"

Supervised vs. unsupervised

• Supervised methods

- You know the components (cherries; blueberries and bananas)
- \circ You know what they taste like
- You want to know the proportions

• Unsupervised methods

- You have no idea what the components are...
- \circ You have no idea how they taste
- You have no idea what the proportions are

• Semi-supervised methods

- You know what fruits taste like
- But you don't know if they were used

Supervised vs unsupervised methods

Supervised vs unsupervised methods

Principle of supervised deconvolution

Similar problem : blind source separation problem (a.k.a. Cocktail party problem)

Supervised methods

- Currently implemented methods
 - <u>CIBERSORT</u>
 - <u>EPIC</u>
 - <u>MCP-counter</u>
 - <u>QuantiSeq</u>
 - <u>TIMER</u>
 - <u>xCell</u>
- They differ
 - In the **signatures** used (only immune cells / other celltypes)
 - In the number of cell types identified
 - In the **quantification** approach (score / proportion of all cells)
 - In the mathematical methods to find the A matrix (SVM-regression / least-square regression / enrichment)

Supervised methods: scores

Tool	Abbrev.	Type	Score	Comparisons	Algorithm
CIBERSORT	CBS	D	Immune cell fractions, rela- tive to total immune cell content	Intra	ν-support vector regression
CIBERSORT abs. mode	CBA	D	Score of arbitrary units that reflects the absolute pro- portion of each cell type	Intra, inter	u-support vector regression
EPIC	EPC	D	Cell fractions, relative to all cells in sample	Intra, inter	constrained least square regression
MCP-counter	МСР	М	Arbitrary units, comparable between samples	Inter	mean of marker gene expression
quanTIseq	QTS	D	Cell fractions, relative to all cells in sample	Intra, inter	constrained least square regression
TIMER	TMR	D	Arbitrary units, comparable between samples (not dif- ferent cancer types)	Inter	linear least square regression
xCell	XCL	М	Arbitrary units, comparable between samples	Inter	ssGSEA (Hänzelmann et al., 2013)

Sturm, G., Finotello, F., Petitprez, F., Zhang, J. D., Baumbach, J., Fridman, W. H., ... Aneichyk, T. (2019). Comprehensive evaluation of transcriptome-based cell-type quantification methods for immuno-oncology. *Bioinformatics*, *35*(14), i436–i445.

Supervised methods: scores

Tool	Abbrev.	Type	Score	Comparisons	Algorithm
CIBERSORT	CBS	D	Immune cell fractions, rela- tive to total immune cell content	Intra	ν-support vector regression
CIBERSORT abs. mode	CBA	D	Score of arbitrary units that reflects the absolute pro- portion of each cell type	Intra, inter	u-support vector regression
EPIC	EPC	D	Cell fractions, relative to all cells in sample	Intra, inter	constrained least square regression
MCP-counter	МСР	Μ	Arbitrary units, comparable between samples	Inter	mean of marker gene expression
quanTIseq	QTS	D	Cell fractions, relative to all cells in sample	Intra, inter	constrained least square regression
TIMER	TMR	D	Arbitrary units, comparable between samples (not dif- ferent cancer types)	Inter	linear least square regression
xCell	XCL	М	Arbitrary units, comparable between samples	Inter	ssGSEA (Hänzelmann et al., 2013)

Sturm, G., Finotello, F., Petitprez, F., Zhang, J. D., Baumbach, J., Fridman, W. H., ... Aneichyk, T. (2019). Comprehensive evaluation of transcriptome-based cell-type quantification methods for immuno-oncology. *Bioinformatics*, 35(14), i436–i445. Intra : you can compare relative proportions within a sample across cell types (more B-cells than T-cells in sample X)

Inter: you can compare a cell-type across samples (more T-cells in sample X compared to sample Y)

Supervised methods : signature matrix

• Signature matrix:

- columns correspond to known cell types (such as immune cell types)
- Based on identified marker genes which are expressed specifically for this particular cell type (using large collection of expression datasets)
- Some methods contain a column for "other cells" allowing the identification of unknown cell types (EPIC)

• Challenges:

- unspecific genes might lead to spillover of one cell types to the other (dendritic cells / B-cells)
- Some cell types are hard to distinguish reg./non-reg.
 CD4+ T-cells

Marker genes

How to define a Signature matrix?

- Example of the CIBERSORT method
 - Signature matrix of 22 leukocyte populations (LM22)
 - Obtained using microarray expression data from purified cell populations
 - Differentially expressed genes between one population and all others

Only a subset of these genes are used for the deconvolution, depending On the datasets considered! -> feature selection

> Newman, A., Liu, C., Green, M. *et al.* Robust enumeration of cell subsets from tissue expression profiles. *Nat Methods* **12**, 453–457 (2015). https://doi.org/10.1038/nmeth.3337

How to define a Signature matrix?

- Example of the xCell method
 - Large collection of 1822 expression datasets for 64 different cell types
 - Identify genes which are over-expressed in one cell type vs. all other ones
 - 6573 gene signatures for
 64 cell types

Aran, D., Hu, Z., & Butte, A. J. (2017). xCell: Digitally portraying the tissue cellular heterogeneity landscape. *Genome Biology*, *18*(1), 1–14. https://doi.org/10.1186/s13059-017-1349-1

How to define a Signature matrix?

the tree

Ο

Ο

10 nodes are selected for the Ο deconvolution process

Becht, E., Giraldo, N. A., Lacroix, L., Buttard, B., Elarouci, N., Petitprez, F., ... de Reyniès, A. (2016). Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biology, 17(1), 1-20. https://doi.org/10.1186/s13059-016-1070-5

cells

cells

Defining a score - performing deconvolution

Score based methods

- Compute a per sample / per cell-type score
- Use specific marker genes
- xCell: enrichment using ROC curve using single-cell Gene Set Enrichment Analysis (ssGSEA)
- **MCP-counter** : average log2 expression of marker genes

Defining a score - performing deconvolution

Deconvolution methods

- Gene expression in one sample = weighted sum of expression profiles in T
- Solving for the coefficients of the A matrix (= proportion matrix)

- Statistical approaches:
 - Regression : non-negative least square / contrained least-square (EPIC)
 - Support-vector machine (CIBERSORT)

Supervised methods based on single-cell reference

- Methods presented so far are based on reference expression profiles obtained from reference bulk datasets (purified cell populations)
- Increasing availability of single-cell datasets allows construction of single-cell based references
- Advantage: signal is not averaged of populations of similar cells
- **Disadvantage** : data is sparse ...

Single-cell based reference

- SCDS : deconvolution based on multiple single-cell references
- Results from multiple references are aggregated and weighted

Dong, M., Thennavan, A., Urrutia, E., Li, Y., Perou, C. M., Zou, F., & Jiang, Y. (2021). SCDC: bulk gene expression deconvolution by multiple single-cell RNA sequencing references. *Briefings in Bioinformatics*, 22(1), 416–427.

Unsupervised **Deconvolution**

Reference-free methods

Supervised Deconvolution

Unsupervised Deconvolution

Selected / Latent/ Embedded space

Original space

Semi-supervised Deconvolution

Selected / Latent/ Embedded space

Original space

Updates on datasets and methods

Immune cell types quantifications on RNA seq (colorectal) All cell types quantifications on RNA seq (breast, lung and pdac)

All cell types quantifications on methylome (pdac)

All cell types quantifications on RNA seq (breast, lung and pdac)

Reference-free NMF (variance based feat. sel) NMF (ICA feature selection) ICA (no feat. sel) ICA (ICA feature selection)

> Reference-free EDEC

Semi-reference based (marker genes) CellMix (NMF - KL divergence) CellMix (NMF - euclidean distance) CellMix (Digital sorting algorithm DSA)

Multivariate statistics for Deconvolution

Original space

Selected / Latent/ Embedded space

Estimating number of cell types using PCA/SVD

Coordinates

Eigenvalues

Rotation/Axes

Estimating number of cell types using PCA/SVD

K-1 split (axis) for K clusters ("cell types" profile) Components helps to select features (genes)

Graphical representation of dimension reduction

PCA does not 'sees' the data structure

Independent components are directions of **non-gaussianity**

NMF components are **non-negative**

From : Introduction to DeconICA

Unsupervised Deconvolution using

FastICA algorithm : $A=[w_1,...,w_{\kappa}]$; $S=A^TX$. with *independence* of components w_i Orientation : independence can lead to **negatively oriented component** Stabilité : w_i are initialized randomly ;

Deconvolution using NMF \bigotimes Н W Χ Approximation Weights w_i of the Sources : vectors of weight Data components for each for genes sample

NMF: determine **W**,**H** that minimizes $f(\mathbf{W},\mathbf{H})=\frac{1}{2} /| \mathbf{X} - \mathbf{W}^{\mathsf{T}}\mathbf{H} /|_{\mathsf{F}}^2$

Where // . // F is Frobenius norm, Kullback-Leibler divergence - CellMix : euclidean distance

Semi-supervised : constrained on H to use (only) marker genes

To go further into details

Graphical representation of dimension reduction & BSS methods.

PCA, ICA, NMF inspired by figures of Andrei Zinovyev, Convex hull: CC BY (Wang et al. 2016)

https://urszulaczerwinska.github.io/DeconICA/DeconICA_introduction.html

https://urszulaczerwinska.github.io/UCzPhDThesis/

Data Challenge for deconvolution

DATA CHALLENGE

Benchmark : Deconvolution from Expression and Methylation Data

https://www.codabench.org/competitions/237/?secret_key=b164d1c1-07ca-4d0c-b55f-99e68 af3a343

How to participate?

(1) **Register** to the challenge on Codalab
(2) **Find** your teammates on discord
(3) **Download** the starting kit and the public datasets

CHALLENGE BEGINS

(1) Work in group to build prediction models
 (2) Submit your code or results on the Codabench platform

 (3) Improve your score
 CHALLENGE ENDS

Feedback on your work to the other teams 3 slides per team - online presentation or PDF format -Approach (1 slide) -Results (1 slide) -Discussion, pros & cons (1 slide)

Yuna Blum, Ligue contre le Cancer Jérôme Cros, APHP Clémentine Decamps, Uni Grenoble Alpes Carl Herrmann, Medical Faculty Heidelberg Slim Karkar, Uni Grenoble Alpes Yasmina Kermezli, Uni Grenoble Alpes Magali Richard, Uni Grenoble Alpes Ashwini Sharma, Uni Grenoble Alpes

https://cancer-heterogeneity.github.io/cometh_training.html

www.eithealth.eu | info@eithealth.eu

EIT Health is supported by the EIT, a body of the European Union

Cell types profiling

Immune cell types quantifications on RNA seq (colorectal)

Reference based (expression table) EPIC Cibersort Quantiseq

All cell types quantifications on methylome (pdac)

Reference based (expression table) EpiDISH

Deconvolution using PCA/SVD

IA4Health School Practical Session

Machine Learning algorithms for prediction of cancer outcomes from multiomic data

Multivariate Analysis

What are multivariate statistics ?

Prediction using Multivariate Statistics

Prediction using Multivariate Statistics

Prediction using MultivariateStatisticstPCA (tensors)Tensorial extension of PCAPARAEAC (tensors)Tensorial extension of PCA

Good start :

Feature Selection + PCA 18.6 "High-Dimensional Regression: Supervised Principal Components" p.694 ESLII.pdf More Details : MultiOmicsDR_Table.pdf

tPCA (tensors)	Tensorial extension of PCA	R
PARAFAC (tensors)	Tensorial extension of PCA	R
tensor CCA	CCA	MATLAB
sCCA	CCA	R
MCCA	CCA	NO
CCA-RLS	CCA	NO
RGCCA	CCA	R
DIABLO	CCA	R
jointNMF	NMF	MATLAB
MultiNMF	NMF	NO
EquiNMF	NMF	NO
IntNMF	NMF	R
iCell	NMF-based	MATLAB
Scikit-fusion	Matrix	python
Higher-order GSVD (HOGSVD	SVD (Matrix tri-factorization)	R
iCluster	Gaaussian latent variable model	R
funcSFA	Gaaussian latent variable model	python
JIVE	PCA	R
AJIVE	PCA	MATLAB
MCIA	Co-Inertia	R
MOFA	Factor Analysis (FA)	R
Group	Factor Analysis (FA)	R
MSFA	Factor Analysis (FA)	R

Sommaire

Data Visualization for Genomics Data Heat Map PCA MFA Regressions Logistic regression Penalized Regression Multivariate Prediction CCA/PLS Regularized CCA Sparse CCA

TP 1

Prediction of Histological classes from Expression Data **TP2** Survival prediction form Expression and Methylation Data

Visualizations of Genomic Data

Why do we need visualization ?

Data Visualization for Genomics Data : Heat Map and Z-score

100

AD

High-level library pheatmap, ComplexHeatmap (BioConductor)

for annotations and basic clustering : hierarchical, k-means...

R: > Heatmap(...,cluster_columns = TRUE) > columnAnnotation()

Data Visualization for Genomics Data : Co-expression and Correlation

Pearson correlation and distance Matrix in R:
>df=as.matrix(as.dist(cor(df, method="pearson"))
>row.names(df)=c(); colnames(df)=c();
>Heatmap(df,cluster_rows=TRUE,cluster_columns=TRUE)

Gene Expression ; Peason Correlation

basic clustering of samples :

Logistic Regression

What is logistic regression ?

Logistic regression 1/3

Logistic regression - Linear Model sigmoid function :

Goal : to attribute the class (1) for an observation $x = \pi(x)$ =

For a vector of observations) we can use the vector formula similar to linear regression:

=)

R:glm(y~x1+x2,family=binomial)

Logistic regression 2/3

Logistic regression - Model building. Example with a series of *nested models* M

 $M(0) \pi(x)=)$ $M(1) \pi(x)=$ $M(2) \pi(x)=)$

... $M(p) \pi(x)=$) adding variables : "forward" removing vatiables : "backward" Critere AIC : $2k - 2 \ln()$ AIC in R : extractAIC (m) in R : logLik (m) R: function step calculate best model based on AIC

m_lo = glm(y~1,d,family=binomial(logit))
m_up = glm(y~.,d,family=binomial(logit))

m = step(m_lo, dir="forward", scope=list(upper=m_up, lower=m_lo))

Logistic regression 3/3

```
Penalized Regression : + λ [ /2 + ]
Lasso: ; Ridge: ; ElasticNet :
Gaussian:
Binomial:
```

```
Binomial:
```

```
R: package glmnet (Hastie)

m=cv.glmnet(x, y, family = "binomial") :cross-validation for models with \lambda

predict(m, xnew, type="response") :fitted probabilities for all models \lambda

predict(m, xnew, type="class") :predicted classes for all models \lambda

predict(m, xnew, type="nonzero", s) :list of selected variables \lambda=s

predict(m, xnew, type="coefficient", s) :coefficients at \lambda=s
```

Advanced ML classification algorithms

random forest xgboost svm

Advanced ML - Decision trees

Supervised learning, mostly for labeled data Nodes are *basic rules* on 1 variable : **defines splits : boundaries in only 1 dimension** Provides Non-linear boundaries Training : Recursive Binary Splitting Number of rules : Depth Depth too small: poor fitting Too many rules : overfitting Pruning: remove sub tree balance complexity vs. fit

Advanced ML : Boosting

Package xgboost example with algorithm *AdaBoost.M1*:

- Define **M** trees of depth **d**
- Misclassified samples at step *m* provide weights for data at step *m*+1
- Error rate at step m provides coefficient for final classification :

= sign()

R:xgboost(data,label,max.depth=d,nrounds=M,objective="binary:logistic")

Advanced ML : RandomForest

Package RandomForest extension of *Bootstrap AGGregatING*

- Define **M** bootstrap datasets
- Train **M** trees of depth **d** with
 - random trees : sample *n features* (variables) before each split
- Final classifier averages predictions :

R:randomForest(type=classification, x=data, y=labels, ntree=M, mtry=n)
M:large enough(500-2000);n:regression:/3, classification:

Advanced ML - SVMs

- Supervised method ; mostly for labeled data
- linear separation hyperplan :
- defines margins (dotted line)
 - **support vectors** are samples that are **within** the margin
 - optimal boundary will **maximize margins** (minimizing) **using support vectors**
- Transforms data for **non-linear boundaries**:
 - polynomial kernels:
 - radial kernels:

Advanced ML - Choosing Models

R: table(factor(training) , factor(prediction)):Create confusion table

```
package caret
createFolds(data$labels, k) :create cross-validation k -folds
```

train() : high level creation and evaluation of many many models

confusionMatrix(factor(training), factor(prediction) : Stats for confusion table
pheatmap(data, annotation_row , show_rownames...) :heatmap