Heterogeneity in pancreatic adenocarcinoma

Does it happen? Is it important?

Jerome Cros Dpt of Pathology – INSERM U1149 Beaujon Hospital, Paris, France

Study of tumor heterogeneity and issues with samples....

1. Beware of pancreatic non-PDAC tumor when using public datasets+++++

Pancreatic cancer

Adenocarcinoma (90%)

Pancreatic cancer

Adenocarcinoma (90%)

Neuroendocrine lesions

Rare lesions Acinar cell carcinoma....

Completely different morphology, biology....

Beware of pancreatic non-PDAC tumor when using public datasets+++++

Beware of pancreatic non-PDAC tumor when using public datasets+++++

Beware of pancreatic non-PDAC tumor when using public datasets+++++

2. Beware of the tissue samples used for biomarker/signature development

- Clonal selection induced by multiple therapies

2. Beware of the tissue samples used for biomarker/signature development

- Clonal selection induced by multiple therapies

3. What kind of tumor sample are accessible? How suitable are they?

Protein on Tum cells	ОК	OK	OK
Mutation on Tum cell	+/- OK	++/- OK	OK
Exp (mi)ARN	+/- OK (richness)	+/- OK (richness)	+/- OK (richness)
Protein in stroma	NON	NON	+/- OK

Liver biopsy+++, true cut +++

3. What kind of tumor sample are accessible? How suitable are they?

Surgical specimen

Tumor +/- sphere 3cm diameter	Frozen carrot 0.6cm wide 0.4 cm thick
14cm ³	0.11cm ³

Protein on Tum cells	OK
Mutation on Tum cell	OK
Exp (mi)ARN	OK
Protein in stroma	OK

Spatialized sampling...

...yes but usually with formalin fixed paraffin embeded samples...

TUMOR						
Tumor cells	Stroma					
	ECM	Vessels	Immune cells	CAF		

	PANCREATIC ADENOCARCINOMA
Tumor cells	Stroma

Heterogeneity of the tumor cell – stroma ratio

Heterogeneity of the tumor cells – stroma ratio

Stroma abundance- pronostic role?

в

H&F

Small sample (<100 pts)

ductal

giant cells osteocl-like Undifferentiated w,

adenosquamous

micropapillary

Tumor type	Frequency	%	Type of associated IPMN	Median survival (months)		
Conventional ductal adenocarcinoma	91	51.4	2 gastric	22.7		
Combined ductal adenocarcinoma						
with cribriform component	17	9.6		28.7		
with papillary component	17	9.6		13.9		
with clear-cell component	16	9.0	1 pancreato-biliary	17.6		
with complex component	12	6.7	1 gastric	10.7		
with gyriform component	8	4.5		12.5		
with micropapillary component	2	1.1		16.1		
Variants and special carcinomas						
Adenosquamous carcinoma*	2	1.1		4.1		
Colloidal/mucinous carcinoma*	2	1.1	1 intestinal	>64.3**		
Medullary carcinoma*	1	0.5		>75.1**		
Tubular carcinoma	3	1.7		>55.3**		
Papillary carcinoma	6	3.4	2 pancreato-biliary, 1 intestinal, 1 gastric	20.6		
All tumors	177	100				

NGS/IHC KRAS/CDKN2A/SMAD4/TP53

Tumor type	Frequency	%	Type of associated IPMN	Median surviva (months)	al	
Conventional ductal adenocarcinoma	91	51.4	2 gastric	22.7		
Combined ductal adenocarcinoma						
with cribriform component	17	9.6		28.7		
with papillary component	17	9.6		13.9		
with clear-cell component	16	9.0	1 pancreato-biliary	17.6		
with complex component	12	6.7	1 gastric	10.7		
with gyriform component	8	4.5		12.5		
with micropapillary component	2	1.1		16.1		
Variants and special carcinomas					7	
Adenosquamous carcinoma*	2	1.1		4.1	7	
Colloidal/mucinous carcinoma*	2	1.1	1 intestinal	>64.3**		
Medullary carcinoma*	1	0.5		>75.1**		
Tubular carcinoma	3	1.7		>55.3**	_	
Papillary carcinoma	6	3.4	2 pancreato-biliary, 1 intestinal, 1 gastric	20.6		
All tumors	177	100				

More frequent MYC amplification?

NGS/IHC KRAS/CDKN2A/SMAD4/TP53 No major difference

Tumor type	Frequency	%	Type of associated IPMN	Median survival (months)		
Conventional ductal adenocarcinoma	91	51.4	2 gastric	22.7		
Combined ductal adenocarcinoma						
with cribriform component	17	9.6		28.7		
with papillary component	17	9.6		13.9		
with clear-cell component	16	9.0	1 pancreato-biliary	17.6		
with complex component	12	6.7	1 gastric	10.7		
with gyriform component	8	4.5		12.5		
with micropapillary component	2	1.1		16.1		
Variants and special carcinomas						
Adenosquamous carcinoma*	2	1.1		4.1		
Colloidal/mucinous carcinoma*	2	1.1	1 intestinal	>64.3**		
Medullary carcinoma*	1	0.5		>75.1**		
Tubular carcinoma	3	1.7		>55.3**		
Papillary carcinoma	6	3.4	2 pancreato-biliary, 1 intestinal, 1 gastric	20.6		
All tumors	177	100				

NGS/IHC KRAS/CDKN2A/SMAD4/TP53 No major difference

KRAS mut

Phenotypes:

- Altered CDKN2A/p16
- High mutation number (4/4)

PDACs with low/intermediate

biological aggressiveness

Schlitter et al. Sci reports 2017

3 large datasets (ICGC (456 pts), TCGA (150 pts), Connor et al. (148 pts) – similar results

TCGA, Cancer cell 2017

342

* there are 119 tumours from 115 cases in the Age Related discovery group

95

** there are 18 tumours from 17 cases in the DSBR discovery group

154

*** there are 2 tumours from 1 case in the APOBEC discovery group

NA

Total sample sizes

Connor et al. JAMA Oncol 2016

Knudsen et al. Clin can res 2017

Epigenomic

More studies are needed+++, possible interest in diagnostic (circulating DNA)

Nones et al. IJC 2014

Axon guidance pathway genes SLIT2, SLIT3, ROBO1, ROBO3

↑ MET

Epigenomic

PDAC transcriptomic subtypes, how many? Do they all exist?

Janky et al. BMC Cancer 2016

PDAC transcriptomic subtypes, how many? Do they all exist?

231patients

PDAC transcriptomic subtypes, how many? Do they all exist?

We try our best to give you pure tumor area....

2 main transcriptomic tumor subtypes with different prognosis

Molecular subtypes may have an important clinical utility++++

Aung et al. Clin can res 2018

True challenge! How to define (clearly) the molecular subtype in samples with few tumor cells???

True challenge! How to define (clearly) the molecular subtype in samples with few tumor cells???

True challenge! How to define (clearly) the molecular subtype in samples with few tumor cells???

And the stroma is also heterogeneous...

There is also heterogeneity in non coding RNA...

Namkung et al. J Gastroenterol Hepatol. 2016

There is also heterogeneity in long non coding RNA...

TCGA, Cancer cell 2017

Very few studies!

Phosphoproteome heterogeneity....(cell lines).....

Humphrey et al. Moll cell proteomics 2016

Phosphoproteome heterogeneity....(cell lines).....

Type 2: Gene processing

Humphrey et al. Moll cell proteomics 2016

Proteomic

Type 3: Strong tyrosine kinase activity

Sensitivity to TKi?

Subaroup 1	Subaroup 2	Subaroup 3			
"Low pTyr"	"Mixed"	"RTK enriched"	Origin	Protein & pTyr Sites	
\bigcirc	\bigcirc	\bigcirc	RTKs	EGFR pTyr 1092/1172	
\bigcirc	\bigcirc	\bigcirc	RTKs	ERBB3 pTyr 1307/1328, RON pTyr 1238/1239 MET pTyr 1003	pTyr Abundance
\bigcirc	\bigcirc	\bigcirc	8 site classifier	BAIAP2 pTyr 337, CTNND1 pTyr 174/904, PKP2 pTyr 166, PKP3 pTyr 84	Medium relative pTyr
\bigcirc	\bigcirc	\bigcirc	33 site classifier	DSP pTyr 28, LSR pTyr 406, SHB pTyr 114	Low relative pTyr

Humphrey et al. Moll cell proteomics 2016

Proteomic

TCGA, Cancer cell 2017

Critical in PDAC growth. Numerous publications on individual mechanisms++++

Daemen et al. PNAS 2015

Métabolomic

Human tumors ?

Major impact of purity (tumor cells) on classifications++++

- Low heterogeneity of classical driver genes
- Most genomic events happen early
- No « mestastasis » gene
- Physical and genomic spatialisation are different+++

Makohon-Moore *et al. Nat Gen* 2017 Yachida *et al. Nature* 2010 Intra-tumor heterogeneity - genomic

- Most genomic events happen before the first metastase
- 50% of tumeurs are not diploïd (T ou H)
- Multiples simultaneous genomic alterations

Notta et al. Nature 2016

How to follow high risk patients???

Notta et al. Nature 2016

Intra-tumor heterogeneity - epigenomic

Epigenomic heterogeneity

Genomic heterogeneity

Tumor progression

Epigenomic heterogeneity

Genomic heterogeneity

Intra-tumor heterogeneity - epigenomic

Mc Donals Nat Gen 2016

Intra-tumor heterogeneity - epigenomic

Epigenomic heterogeneity

Genomic heterogeneity

If tumor were pure, that would be too easy.....

If tumor were pure, that would be too easy.....

If tumor were pure, that would be too easy..... Poor Moderate Well Differentiation Moffitt Classical Basal % Non-gland forming Group A component Group B Z-score

N Kalimuthu S, et al. Gut 2019

If tumor were pure, that would be too easy.....

« classical » tumors with a basal like subpopulation?

Is there an epigenetic-driven plasticity between subtypes?

Lomberk et al. Nat Com 2018

E. Cortez et al. / Seminars in Cancer Biology 25 (2014) 3-9

Intra-tumor heterogeneity - stroma

blasts

Ohlund et al., J Exp Med 2017

PDGFR_β / IL6

Intra-tumor heterogeneity - stroma

0.8

0.6

0.4

0.2

0

basis

2

3

4

A

B

C

D

subtypes

silhouette

0.94

0.74

In humans, it may be a but more complicated....

Patient-derived CAF

Neuzillet et al. J Pathol 2019

Multiple CAF subtype co-exist in the same tumor, albeight with different ratio and distribution?

Neuzillet et al. J Pathol 2019

Conclusion – PDAC heterogeneity

- Major inter-tumor heterogeneity, at multiple level
- Therapeutic opportunity?
- 2 tumor subtypes, how many stroma subtypes....?
- How to best define the subtype in routine practice?

- Most genomic events happen early
- Epigenetic intratumor heterogeneity >>> genetic
- Probable massive spatial transcriptomic heterogeneity....

GOOD LUCK!!!!!!!!!!!!!!

Heterogeneity in pancreatic adenocarcinoma

Does it happen? Is it important?

Jerome Cros Dpt of Pathology – INSERM U1149 Beaujon Hospital, Paris, France

	PANCREATIC ADENOCARCINOMA
Tumor cells	Stroma

PANCREATIC NEUROENDOCRINE TUMOR	
Tumor cells	Stroma