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Choice of K

A. Linseed Algorithm (complete Deconvolution) B. Bradwurst library measures of control
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Process and Deconvolution

1.- Pre-processing

Anti-logarithmic functions
(D’ =27D, or D'= exp(D))
VS

keeping data in log-scale &

2.- Feature selection

" Variance of expression values
= Threshold : 85 % highest expression

TMM normalization of linear data(D’)

3.- Deconvolution method

1) NMF (method = Lee | Brunet)

2) Bratwurst (Tensorflow implementation of
NMF)



Interpretation

* Given Pancreatic Cancer dataset we can suppose that K=3 indicates :
- Immune cells
= Tumor cells

- Fibroblasts

* Applied 2 methods for Unsupervised Deconvolution
* No confounding factors added to data = No need for normalisation
* Interesting platform of Codalab, to evaluate our results

* Creative time for brainstorming and fruitful collaboration :-)

* CONS
* Not much time for biological interpretation of data.
* Restriction of tools to use in Unsupervised method-More familiar with (semi-)supervised

* One of our methods couldn’t be fully implemented (Tensorflow dependencies)
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Unsupervised approaches

1. K-choice: PCA explained variance
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Unsupervised approaches

1. K-choice: PCA explained variance
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Unsupervised approaches

1. K-choice: PCA explained variance
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Unsupervised approaches
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Supervised approach

EpiDISH (https://github.com/sjczheng/EpiDISH)
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https://github.com/sjczheng/EpiDISH

Supervised approach

EpiDISH (https://github.com/sjczheng/EpiDISH)
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https://github.com/sjczheng/EpiDISH

Advantages/Drawbacks

EpiDISH (https://github.com/sjczheng/EpiDISH)
Advantages
e Easy to use (a single function EpiDISH: :epidish)
e Pre-selection of the probes is already done

e Supervised approach with known cell types

Drawbacks

e Pre-selection of the probes is already done

e Supervised approach with known cell types (we got lucky it was the good ones)


https://github.com/sjczheng/EpiDISH
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PCA

ICA,,

PCA (53% variability)

Exploration & Processing
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Deconvolution

Best error ~ 0.16



Interpretation

. The data were quite simple — 2 PCs only

. ICA successfully worked as feature selection tool. But only two
components were annotated by biological functions

. We get better results with log-transformed data

. Basic NMF works not bad, though it showed some stochasticity

= Multiple runs are recommended

= ICA, perhaps, can be used as an initial estimation for NMF



Results for challenge #1
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Preprocessing

e We filtered the initial dataset using a subset of pancreatic cancer hyper and hypo methylated
CpGs we got from the literature

e We used k-means and analysed the elbow curve to determine the number of LMCs (4)
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Deconvolution

e Weused the EDec algorithm for deconvolution



Conclusion

e We may have restrained the number of features to much, maybe we should have look up subsets
coming from different studies.

e Wefound 4 methylation patterns even though it might not reflect perfectly on the number of cell
types
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e Method 1:

Variable selection

sds = apply (D, sd) ; D = D[sds > 0.2, ]

e Method 2 :
none



Deconvolution methods

Method 1: NMF

with default

PCA/ICA

explained variance
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Pros and cons

* Pros
- Fast and simple (sd based + NMF)
- ICA related to biological none Sd>0.2
Interpretation
« Cons NMF 0.18 0.15
— Local minimum with sd > 0.2 (over
fitting) ICA 0.11 0.13

- NMF depend on random
initialization (nrun did not work)



PRE-PROCESSING

1) ChOice Of k Bo_scriﬁﬁft

K=3

medepir::plot_k

2) Feature selection
5000 or 10000 most variable features selected for most tools

medepir::feature _selection




TOOLS

1)
2)

3)

4)

NMF
RefFreeEWAS / medepir::RFE(D_FS, nbcell = k)

1) Initialize euclidean distance and manhattan
EDec / medepir::Edec(D_FS, nbcell =k, infloci = infloci)

1) RefFactor score to select features (500)
2) Reference examples data from EDec

3) CpG matrix from EpiDISH

EpiDISH

1)  Selection of features (variables + epidish ref)

2) All features

3) Methods "RPC", "CBS", "CP*

Robust Partial Correlations-RPC(Teschendorff et al. 2017),
Cibersort-CBS(Newman et al. 2015),

Constrained Projection-CP(Houseman et al. 2012))



RESULTS
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Approach

Reference-based
methods

Methods:
deconRNAseq+
scRNAseq

|
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Deconvolution of the RNA-Seq data by using NMF

1). Instalation of NMF package
if ( {"NMF" %in% installed.packages() }) {
install.packages(pkgs = "NMF", repos = "https://cloud.r-project.org")

}

2). Input data

dat <- inputSrna

sort.var <- apply(dat,1,sd,na.rm=T)

sel.dat <- dat[order(sort.var,decreasing = T)[1:5000],]

3). NMF analysis
nmf.mod <- nmf(sel.dat,rank = 5)
A.estimate <- nmf.mod@fit@H
col.sums <- 1/apply(A.estimate,2,sum)
for(i in 1:ncol(A.estimate)){
A.estimatel[,i] <- A.estimate][,i]*col.sums][i]

}

return(A.estimate)




Interpretation

Choosing the right reference profiles is crucial and hard

NMF for RNAseq technically works, but results are not really
interpretable

Determining the number of cell types itself is not trivial from
RNAseq data

~urther things to be considered:

* Feature selection

* Rescaling of the A estimate
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Choice of K
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Deconvolution Method

® RefFreeEWAS

Permits reference-free deconvolution. RefFreeEWAS offers a method for evaluating the
extent to which the underlying reflects specific types of cells.

Solution to a convolution equation of the form D =A*T

Feature selection of the 5000 most variable genes in D

Regression based methods
Probabilistic methods
Enrichment methods

Matrix factorization methods



Interpretation

o
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Pre-treatment / Choice of K

Input: normalized/log-transformed RNA-seq data

Data transformation

e Log-transformed data vs. Linear data

Feature selection

* Variance-based feature selection (10 to 40%) vs. none

Eigenvalues (PCA)

PCs=2
K =PCs + 1 (Cattell’s rule)
K=3

10 15 20 25

Index

Figure: Scree plot

30



Deconvolution method

Unsupervised approaches Supervised approaches

Pre-requirement

NMF-based approaches * Fibroblast estimation

- Basic NMF
- Consensus NMF: Method: MCP-counter

-> compute a consensus A matrix averaging « Marker-based approach

different NMF clusterings * Produces an abundance score for 8 immune cell
populations and 2 stromal cell pops.
» Alternative strategies: focus on the 3/4 most abundant

cell pop, include an additional ‘consensus’ component

Estimation of A:
* Derive proportions from abundance scores by dividing

>s.for each patient



Interpretation: Pros & Cons

MCPcounter: promising !

* Pros: easy to run & interpret, fast

* Cons:
- gives abundance scores and not proportions 7 —

-> The approach to estimate proportions could be refined (?)

- could allow some cell pop to be discarded (semi-sup)

cells

NK cells —
B lineage —|

Best result (MAE_D1=0.1/MAE_D2=0.08):

Neutrophils —|

ndritic cells —
thelial cells —|
Fibroblasts —|

D8 T cell
‘mphocytes —|
ytic lineage —|

NMF with no feature selection // 3 components // log-transformed data
* Pros: easy to run, fast
* Cons:

- interpretation of the components needs further analyses

- can be trapped in suboptimal local minima



(%9L'9) 20d

0.0

PC1 (10.2%)



Scree plot
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Fercentage of explained variances
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RefFreeCellMix(factors,muO=NULL,K=3,iters=9,Yfinal=NULL,verbose=TRUE)

Default

1 0.2967613432

MAE A MAE 1 A MAE 2 A

Rows

0.2864 (8) 0.0952 (6) 0.1912 (9)

1 10 11 12 12 14 15 16 17 18 19 2 20 21 22 23 24 25 26 27 28 29 3 30 4 5 6 7 & 9

Columns

value

0.7s
0.50
0.25
0.00
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