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2pm —3pm Pedagogy Meeting report
Room la scolette Mezzanine
3pm—4pm Meeting report Pedagogy
Mezzanine Room la scolette
BREAK
4.30pm — 6pm Brainstorming Brainstorming
Biological interpretation Benchmark dataset
Room la scolette Mezzanine

6pm — 6.30pm Restitution all together Restitution all together
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Guidelines for cell-type heterogeneity quantification based on a comparative
analysis of reference-free DNA methylation deconvolution software

Clementine Decamps, ) Florian Privé, Raphael Bacher, Daniel Jost, Arthur Waguet, HADACA consortium,
Eugene Andres Houseman, Eugene Lurie, Pavlo Lutsik, Aleksandar Milosavljevic, Michael Scherer,

Michael G.B. Blum, Magali Richard
doi: https://doi.org/10.1101/698050

> R package medepir
https://rdrr.io/github/bcm-

uga/medepir/man/medepir-package.html

M Richard, C Decamps, F Privé, M Blum

> Blog posts

Towards Data Science

Sharing concepts, ideas, and codes

DATA SCIENCE ~ MACHINE LEARNING  PROGRAMMING  VISUALIZATION

Health data challenges organization:
feedback, comments and

recommendations.
Authors: Elise Amblard, Yuna Blum, Jane
Merlevede, Magali Richard
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https://rdrr.io/github/bcm-uga/medepir/man/medepir-package.html
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COMETH — COmputational METhods in Health
EIT Health call 2020 (600k€)
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COMETH — COmputational METhods in Health
EIT Health call 2020 (600k€)

Unbiased evaluation of computational methods

» Generation of high quality » Development of a dedicated
benchmarking datasets benchmarking platform
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Figl: Scheme of the benchmarking platform

Biological questions (immune load, tumor purity...)
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Fig2: Dataset. An example of pancreatic cancer dataset
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Fig3: Benchmark result (example)
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Fig5: Evaluation metrics

MAE error on estimated A (in silico simulations, FACS counting...)
RMSE error on estimated A (in silico simulations, FACS counting...)
Correlation with Immune Cell types (in silico simulations, FACS counting...)



'EIt Health
BUDGET : Data generation

reflecting the diversity of samples clinicians may be confronted with

Different cancer types
Variety of sample types

Molecular level

 Different type of molecular data
* Innovative technologies Gene Expression DNA methylation
3'RNA-seq Single Cell MethEpic
100€/sample | . SANASed 600€/sample
Type of cancers | Type of Samples Nb of P 5.6K€/sample P
samples
FFPE (archived) 30
Colorectal cancer 35 35
FF (Fresh/frozen) 5
l FFPE 30
Lung cancer 35 35
FF 5
FFPE 30
35 3 35
F Pancreatic cancer FF 5
3 purified cell types 40 120 120

22500 17000 135000
TOTAL ~170,000 €
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